
SYMBOLIC LOGIC

www.iitkirba.xyz

PROPOSITIONAL LOGIC IN ARTIFICIAL INTELLIGENCE

9/13/2025 2Predicate Logic

Logic is concerned with reasoning and the validity of arguments. In general, in logic, we

are not concerned with the truth of statements, but rather with their validity. That is to

say, although the following argument is clearly logical, it is not something that we would

consider to be true:

• All lemons are blue

• Mary is a lemon

• Therefore, Mary is blue

This set of statements is considered to be valid because the conclusion (Mary is blue)

follows logically from the other two statements, which we often call the premises.

1. Propositional Logic

2. Predicate Logic/ First order Logic

www.iitkirba.xyz

PROPOSITIONAL LOGIC IN ARTIFICIAL INTELLIGENCE

Propositional logic (PL) is the simplest form of logic where all the statements are made by propositions. A

proposition is a declarative statement which is either true or false. It is a technique of knowledge representation in

logical and mathematical form.

Example:

a) It is Sunday.

b) The Sun rises from West (False proposition)

c) 3+3= 7(False proposition)

d) 5 is a prime number.

9/13/2025 3Predicate Logic

Syntax of propositional logic:

The syntax of propositional logic defines the allowable sentences for the knowledge representation. There are two

types of Propositions:

1.Atomic Propositions

2.Compound propositions

• Atomic Proposition: Atomic propositions are the simple propositions. It consists of a single proposition symbol.

These are the sentences which must be either true or false.

Example:

a) 2+2 is 4, it is an atomic proposition as it is a true fact.

b) "The Sun is cold" is also a proposition as it is a false fact.

• Compound proposition: Compound propositions are constructed by combining simpler or atomic propositions,

using parenthesis and logical connectives.

Example:

a) "It is raining today, and street is wet."

b) "Ankit is a doctor, and his clinic is in Mumbai." www.iitkirba.xyz

LOGICAL CONNECTIVES

Logical connectives are used to connect two simpler propositions or representing a sentence logically. We can create

compound propositions with the help of logical connectives. There are mainly five connectives, which are given as follows:

1. Negation: A sentence such as ¬ P is called negation of P. A literal can be either Positive literal or negative literal.

2. Conjunction: A sentence which has ∧ connective such as, P ∧ Q is called a conjunction.

Example: Rohan is intelligent and hardworking. It can be written as,

P= Rohan is intelligent, Q= Rohan is hardworking. → P∧ Q.

3. Disjunction: A sentence which has ∨ connective, such as P ∨ Q. is called disjunction, where P and Q are the

propositions.

Example: "Ritika is a doctor or Engineer"

Here P= Ritika is Doctor. Q= Ritika is Doctor, so we can write it as P ∨ Q.

4. Implication: A sentence such as P → Q, is called an implication. Implications are also known as if-then rules. It can

be represented as

If it is raining, then the street is wet.

Let P= It is raining, and Q= Street is wet, so it is represented as P → Q

5. Biconditional: A sentence such as P⇔ Q is a Biconditional sentence, example If I am breathing, then I am alive

P= I am breathing, Q= I am alive, it can be represented as P ⇔ Q.

9/13/2025 4Predicate Logic

www.iitkirba.xyz

LOGICAL CONNECTIVES

9/13/2025 5Predicate Logic

www.iitkirba.xyz

PRECEDENCE OF CONNECTIVES

9/13/2025 6Predicate Logic

Precedence Operators

First Precedence Parenthesis

Second Precedence Negation

Third Precedence Conjunction(AND)

Fourth Precedence Disjunction(OR)

Fifth Precedence Implication

Six Precedence Biconditional

www.iitkirba.xyz

PROPERTIES OF OPERATORS

9/13/2025 7Predicate Logic

• Commutativity:

• P∧ Q= Q ∧ P, or

• P ∨ Q = Q ∨ P.

• Associativity:

• (P ∧ Q) ∧ R= P ∧ (Q ∧ R),

• (P ∨ Q) ∨ R= P ∨ (Q ∨ R)

• Identity element:

• P ∧ True = P,

• P ∨ True= True.

• Distributive:

• P∧ (Q ∨ R) = (P ∧ Q) ∨ (P ∧ R).

• P ∨ (Q ∧ R) = (P ∨ Q) ∧ (P ∨ R).

Limitations of Propositional logic:

• We cannot represent relations like ALL, some, or none with propositional logic. Example:

• All the girls are intelligent.

• Some apples are sweet.

• Propositional logic has limited expressive power.

• In propositional logic, we cannot describe statements in terms of their properties or logical relationships.

• DE Morgan's Law:

• ¬ (P ∧ Q) = (¬P) ∨ (¬Q)

• ¬ (P ∨ Q) = (¬ P) ∧ (¬Q).

• Double-negation elimination:

• ¬ (¬P) = P.

www.iitkirba.xyz

RULES OF INFERENCE

9/13/2025 8Predicate Logic

In artificial intelligence, we need intelligent computers which can create new logic from old logic

or by evidence, so generating the conclusions from evidence and facts is termed as Inference.

Inference rules

Inference rules are the templates for generating valid arguments. Inference rules are applied to

derive proofs in artificial intelligence, and the proof is a sequence of the conclusion that leads to

the desired goal.

In inference rules, the implication among all the connectives plays an important role. Following

are some terminologies related to inference rules:

• Implication: It is one of the logical connectives which can be represented as P → Q. It is a

Boolean expression.

• Converse: The converse of implication, which means the right-hand side proposition goes to

the left-hand side and vice-versa. It can be written as Q → P.

• Contrapositive: The negation of converse is termed as contrapositive, and it can be

represented as ¬ Q → ¬ P.

• Inverse: The negation of implication is called inverse. It can be represented as ¬ P → ¬ Q.

www.iitkirba.xyz

9/13/2025 9Predicate Logic

RULES OF INFERENCE

From the above term some of the compound statements are equivalent to each other, which we

can prove using truth table:

www.iitkirba.xyz

9/13/2025 10Predicate Logic

Types of Inference rules:

1. Modus Ponens:

The Modus Ponens rule is one of the most important rules of inference, and it states that if P and P → Q is

true, then we can infer that Q will be true. It can be represented as:

Example:

Statement-1: "If I am sleepy then I go to bed" ==> P→ Q

Statement-2: "I am sleepy" ==> P

Conclusion: "I go to bed." ==> Q.

Hence, we can say that, if P→ Q is true and P is true then Q will be true.

2. Modus Tollens:

The Modus Tollens rule state that if P→ Q is true and ¬ Q is true, then ¬ P will also true. It can be

represented as:

Statement-1: "If I am sleepy then I go to bed" ==> P→ Q

Statement-2: "I do not go to the bed."==> ~Q

Statement-3: Which infers that "I am not sleepy" => ~P

RULES OF INFERENCE

www.iitkirba.xyz

9/13/2025 Predicate Logic 11

3. Hypothetical Syllogism:

The Hypothetical Syllogism rule state that if P→R is true whenever P→Q is true, and Q→R is

true. It can be represented as the following notation:

Example:

Statement-1: If you have my home key then you can unlock my home. P→Q

Statement-2: If you can unlock my home then you can take my money. Q→R

Conclusion: If you have my home key then you can take my money. P→R

4. Disjunctive Syllogism:

The Disjunctive syllogism rule state that if P∨Q is true, and ¬P is true, then Q will be true. It can

be represented as:

Example:

Statement-1: Today is Sunday or Monday. ==>P∨Q

Statement-2: Today is not Sunday. ==> ¬P

Conclusion: Today is Monday. ==> Q

RULES OF INFERENCE

www.iitkirba.xyz

9/13/2025 Predicate Logic 12

5. Addition:

The Addition rule is one the common inference rule, and it states that If P is true, then P∨Q will be true.

Example:

Statement: I have a vanilla ice-cream. ==> P

Statement-2: I have Chocolate ice-cream.

Conclusion: I have vanilla or chocolate ice-cream. ==> (P∨Q)

6. Simplification:

The simplification rule state that if P∧ Q is true, then Q or P will also be true. It can be represented as:

Proof by Truth-Table:

7. Resolution:

The Resolution rule state that if P∨Q and ¬ P∧R is true, then Q∨R will also be true. It can be represented

as

RULES OF INFERENCE

www.iitkirba.xyz

9/13/2025 Predicate Logic 13

TRANSLATING BETWEEN ENGLISH AND LOGIC NOTATION

1. “It is raining and it is Tuesday.”

might be expressed as: R ∧ T,

Where R means “it is raining” and T means “it is Tuesday.”

2. “it is raining in New York” or “it is raining heavily” or even “it rained for 30 minutes on

Thursday” , then R will probably not suffice.

To express more complex concepts like these, we usually use predicates.

Hence, for example, we might translate

“it is raining in New York” as: N(R) We might equally well choose to write it as: R(N)

• When we write N(R), we are saying that a property of the rain is that it is in New York,

whereas with R(N) we are saying that a property of New York is that it is raining.

Which we use depends on the problem we are solving.

• It is likely that if we are solving a problem about New York, we would use R(N),

whereas if we are solving a problem about the location of various types of weather, we

might use N(R).
www.iitkirba.xyz

9/13/2025 Predicate Logic 14

TRANSLATING BETWEEN ENGLISH AND LOGIC NOTATION

Jeffery is happy.

Solomon and Kevin are both dogs.

Carlos is happier than Sue, but sadder than Fred.

James is a troublemaker when Kevin dislikes him.

Whenever he eats sandwiches that have pickles in them, he ends up either asleep at his

desk or singing loud songs

www.iitkirba.xyz

9/13/2025 Predicate Logic 15

FIRST-ORDER LOGIC (PREDICATE LOGIC)

• First-order logic is another way of knowledge representation in artificial intelligence.

It is an extension to propositional logic.

• FOL is sufficiently expressive to represent the natural language statements in a

concise way.

• First-order logic is also known as Predicate logic or First-order predicate logic.

First-order logic is a powerful language that develops information about the objects

in a more easy way and can also express the relationship between those objects.

• First-order logic (like natural language) does not only assume that the world contains

facts like propositional logic but also assumes the following things in the world:

• Objects: A, B, people, numbers, colors, wars, theories, squares, pits, Wumpus,

......

• Relations: It can be unary relation such as: red, round, is adjacent, or n-any

relation such as: the sister of, brother of, has color, comes between

• Function: Father of, best friend, third inning of, end of,

• As a natural language, first-order logic also has two main parts:

• Syntax

• Semantics

www.iitkirba.xyz

9/13/2025 Predicate Logic 16

FIRST-ORDER LOGIC (PREDICATE LOGIC)

Atomic sentences:

• Atomic sentences are the most basic sentences of first-order logic. These sentences are formed

from a predicate symbol followed by a parenthesis with a sequence of terms.

• We can represent atomic sentences as Predicate (term1, term2,, term n).

Example: Ravi and Ajay are brothers: => Brothers(Ravi, Ajay).

Chinky is a cat: => cat (Chinky).

Complex Sentences:

• Complex sentences are made by combining atomic sentences using connectives.

Constant 1, 2, A, John, Mumbai, cat,....

Variables x, y, z, a, b,....

Predicates Brother, Father, >,....

Function sqrt, LeftLegOf,

Connectives ∧, ∨, ¬, ⇒, ⇔

Equality ==

Quantifier ∀, ∃

www.iitkirba.xyz

9/13/2025 Predicate Logic 17

FIRST-ORDER LOGIC (PREDICATE LOGIC)

First-order logic statements can be divided into two parts:

• Subject: Subject is the main part of the statement.

• Predicate: A predicate can be defined as a relation, which binds two atoms together in a

statement.

Consider the statement: "x is an integer.", it consists of two parts, the first part x is the subject

of the statement and second part "is an integer,“ is known as a predicate.

Quantifiers in First-order logic:

• A quantifier is a language element which generates quantification, and quantification specifies

the quantity of specimen in the universe of discourse.

• These are the symbols that permit to determine or identify the range and scope of the variable

in the logical expression. There are two types of quantifier:

• Universal Quantifier, (for all, everyone, everything)

• Existential quantifier, (for some, at least one).

www.iitkirba.xyz

9/13/2025 Predicate Logic 18

FIRST-ORDER LOGIC (PREDICATE LOGIC)

Universal Quantifier:

Universal quantifier is a symbol of logical representation, which specifies that the statement

within its range is true for everything or every instance of a particular thing.

The Universal quantifier is represented by a symbol ∀, which resembles an inverted A.

Note: In universal quantifier we use implication "→".

If x is a variable, then ∀x is read as:

• For all x

• For each x

• For every x.

Example:

All man drink coffee.

Let a variable x which refers to

a cat so all x can be represented in UOD

as seen:

∀x man(x) → drink (x, coffee). www.iitkirba.xyz

9/13/2025 Predicate Logic 19

FIRST-ORDER LOGIC (PREDICATE LOGIC)

Existential Quantifier:

Existential quantifiers are the type of quantifiers, which express that the statement within its

scope is true for at least one instance of something.

It is denoted by the logical operator ∃, which resembles as inverted E. When it is used with a

predicate variable then it is called as an existential quantifier.

Note: In Existential quantifier we always use AND or Conjunction symbol (∧).

If x is a variable, then existential quantifier will be ∃x or ∃(x). And it will be read as:

• There exists a 'x.'

• For some 'x.'

• For at least one 'x.'

Example:

Some boys are intelligent.

∃x: boys(x) ∧ intelligent(x)

It will be read as:

There are some x where x is a boy who is intelligent. www.iitkirba.xyz

9/13/2025 Predicate Logic 20

FIRST-ORDER LOGIC (PREDICATE LOGIC)

1. All birds fly.

2. Every man respects his parent.

3. Some boys play cricket.

In this question the predicate is "fly(bird)."

And since there are all birds who fly so it will be represented as follows.

∀x bird(x) →fly(x).

In this question, the predicate is "play(x, y)," where x= boys, and y= game. Since there are

some boys so we will use ∃, and it will be represented as:

∃x boys(x) → play(x, cricket).

In this question, the predicate is "respect(x, y)," where x=man, and y= parent.

Since there is every man so will use ∀, and it will be represented as follows:

∀x man(x) → respects (x, parent).

www.iitkirba.xyz

9/13/2025 Predicate Logic 21

FIRST-ORDER LOGIC (PREDICATE LOGIC)

4. Not all students like both Mathematics and Science.

5. Only one student failed in Mathematics.

In this question, the predicate is "like(x, y)," where x= student, and y= subject.

Since there are not all students, so we will use ∀ with negation, so following representation

for this:

¬∀ (x) [student(x) → like(x, Mathematics) ∧ like(x, Science)].

In this question, the predicate is "failed(x, y)," where x= student, and y= subject.

Since there is only one student who failed in Mathematics, so we will use following

representation for this:

∃(x) [student(x) → failed (x, Mathematics) ∧∀ (y) [¬(x==y) ∧ student(y) →

¬failed (x, Mathematics)].

www.iitkirba.xyz

9/13/2025 Predicate Logic 22

INFERENCE IN FIRST-ORDER LOGIC

Substitution:

Substitution is a basic procedure that is applied to terms and formulations. It can be found in all

first-order logic inference systems. When there are quantifiers in FOL, the substitution becomes

more complicated. When we write F[a/x], we are referring to the substitution of a constant "a"

for the variable "x.“

[Note: first-order logic can convey facts about some or all of the universe's objects.]

Equality:

In First-Order Logic, atomic sentences are formed not only via the use of predicate and words,

but also through the application of equality. We can do this by using equality symbols, which

indicate that the two terms relate to the same thing.

Example: Brother (John) = Smith.

In the above example, the object referred by the Brother (John) is close to the object referred

by Smith. The equality symbol can be used with negation to portray that two terms are not the

same objects.

Example: ￢(x=y) which is equivalent to x ≠y.

www.iitkirba.xyz

9/13/2025 Predicate Logic 23

INFERENCE IN FIRST-ORDER LOGIC

FOL inference rules for quantifier:

First-order logic has inference rules similar to propositional logic, therefore here are some basic

inference rules in FOL:

1. Universal Generalization:

 Universal generalization is a valid inference rule that states that if premise P(c) is true for any

arbitrary element c in the universe of discourse, we can arrive at the conclusion x P. (x).

 It can be represented as:

 If we want to prove that every element has a similar property, we can apply this rule.

 x must not be used as a free variable in this rule.

Example: Let's represent, P(c): "A byte contains 8 bits", so "All bytes contain 8 bits."

for ∀ x P(x) , it will also be true.

www.iitkirba.xyz

9/13/2025 Predicate Logic 24

INFERENCE IN FIRST-ORDER LOGIC

FOL inference rules for quantifier:

First-order logic has inference rules similar to propositional logic, therefore here are some basic

inference rules in FOL:

2. Universal Instantiation:

 A valid inference rule is universal instantiation, often known as universal elimination or UI. It

can be used to add additional sentences many times.

 The new knowledge base is logically equal to the existing knowledge base.

 We can infer any phrase by replacing a ground word for the variable, according to UI

 The UI rule say that we can infer any sentence P(c) by substituting a ground term c (a constant

within domain x) from ∀ x P(x) for any object in the universe of discourse.

 It can be represented as

Example: 1 IF "Every person like ice-cream"=> ∀x P(x) so we can infer that

"John likes ice-cream" => P(c)

www.iitkirba.xyz

9/13/2025 Predicate Logic 25

INFERENCE IN FIRST-ORDER LOGIC

Example: 2 Let's take a famous example,

"All kings who are greedy are Evil." So let our knowledge base contains this detail as in the form

of FOL: ∀x king(x) ∧ greedy (x) → Evil (x),

We can infer any of the following statements using Universal Instantiation from this information:

• King(John) ∧ Greedy (John) → Evil (John),

• King(Richard) ∧ Greedy (Richard) → Evil (Richard),

• We can infer any phrase by replacing a ground word for the variable, according to UI

• King(Father(John)) ∧ Greedy (Father(John)) → Evil (Father(John)),

www.iitkirba.xyz

9/13/2025 Predicate Logic 26

INFERENCE IN FIRST-ORDER LOGIC

FOL inference rules for quantifier:

First-order logic has inference rules similar to propositional logic, therefore here are some basic

inference rules in FOL:

3. Existential Instantiation:

 Existential instantiation is also known as Existential Elimination, and it is a legitimate first-

order logic inference rule.

 It can only be used to replace the existential sentence once.

 Although the new KB is not conceptually identical to the old KB, it will be satisfiable if the

old KB was.

 This rule states that for a new constant symbol c, one can deduce P(c) from the formula given

in the form of x P(x).

 The only constraint with this rule is that c must be a new word for which P(c) is true.

 It's written like this:

www.iitkirba.xyz

9/13/2025 Predicate Logic 27

INFERENCE IN FIRST-ORDER LOGIC

Example: 1

From the given sentence: ∃x Crown(x) ∧ OnHead(x, John),

So we can infer: Crown(K) ∧ OnHead(K, John), as long as K does not appear in the

knowledge base.

 The above used K is a constant symbol, which is known as Skolem constant.

 The Existential instantiation is a special case of Skolemization process.

4. Existential introduction

1.An existential generalization is a valid inference rule in first-order logic that is also known as

an existential introduction.

2.This rule argues that if some element c in the universe of discourse has the property P, we can

infer that something in the universe has the attribute P.

3.It's written like this:

Example: Let's say that,

"Priyanka got good marks in English."

"Therefore, someone got good marks in English."

www.iitkirba.xyz

9/13/2025 Predicate Logic 28

FIRST-ORDER LOGIC (PREDICATE LOGIC)

Free and Bound Variables

There are two types of variables based upon their interaction with the quantifiers in a

First Order Logic in AI, namely free and bound variables.

1. Free Variables:

Free variables are those variables that do not come under the scope of the quantifier. For

instance, in an expression ∀x∃yP(x,y,z), z is a free variable because it doesn't come

under the scope of any quantifier.

2. Bound Variables:

Bound variables are those variables that occur inside the scope of the quantifier. For

instance, in an expression ∀x∃yP(x,y,z), x and y are bound variables because they occur

inside the scope of the quantifiers.

www.iitkirba.xyz

9/13/2025 Predicate Logic 29

FIRST-ORDER LOGIC (PREDICATE LOGIC)

In logic, a Well-Formed Formula (WFF) is a string of symbols that is syntactically correct and

can be interpreted as a meaningful statement. Essentially, it's a formula that follows the rules of a

specific logical language, making it a valid expression within that system.

• Symbols:

WFFs are built from symbols like propositional variables (e.g., P, Q), logical connectives (e.g., ∧

for AND, ∨ for OR, ¬ for NOT), and parentheses for grouping.

• Formation Rules:

Specific rules dictate how these symbols can be combined to create a WFF. These rules vary

depending on the type of logic (propositional, predicate, etc.).

• Meaningful Statement:

A WFF represents a proposition (a statement that can be true or false) and can be assigned a truth

value (true or false) based on the meaning of its components and the rules of the logic system.

www.iitkirba.xyz

FIRST-ORDER LOGIC (PREDICATE LOGIC)

9/13/2025 Predicate Logic 30

Convert the following sentences to Predicate Logic

1. Marcus was a man.

2. Marcus was a Pompeian.

3. All Pompeians were Romans.

4. Caesar was a ruler.

5. All Pompeians were either loyal to Caesar or hated him.

6. Every one is loyal to someone.

7. People only try to assassinate rulers they are not loyal to.

8. Marcus tried to assassinate Caesar.

9. All men are people.

Using Predicate Logic to prove that,

Was Marcus loyal to Caesar?

www.iitkirba.xyz

FIRST-ORDER LOGIC (PREDICATE LOGIC)

9/13/2025 Predicate Logic 31

8. Marcus tried to assassinate Caesar.

1. Marcus was a man.

2. Marcus was a Pompeian.

3. All Pompeians were Romans.

4. Caesar was a ruler.

5. All Pompeians were either loyal to Caesar or hated him.

6. Every one is loyal to someone.

7. People only try to assassinate rulers they are not loyal to.

9. All men are people.

www.iitkirba.xyz

FIRST-ORDER LOGIC (PREDICATE LOGIC)

9/13/2025 Predicate Logic 32

1. 𝑚𝑎𝑛(𝑀𝑎𝑟𝑐𝑢𝑠)

2. 𝑃𝑜𝑚𝑝𝑒𝑖𝑎𝑛 𝑀𝑎𝑟𝑐𝑢𝑠

3. ∀𝑥: 𝑃𝑜𝑚𝑝𝑒𝑖𝑎𝑛 𝑥 → 𝑅𝑜𝑚𝑎𝑛(𝑥)

4. 𝑟𝑢𝑙𝑒𝑟(𝐶𝑎𝑒𝑠𝑎𝑟)

5. ∀𝑥: 𝑅𝑜𝑚𝑎𝑛 𝑥 → 𝑙𝑜𝑦𝑎𝑙𝑡𝑜 𝑥, 𝐶𝑎𝑒𝑠𝑎𝑟 ∨ ℎ𝑎𝑡𝑒 (𝑥, 𝐶𝑎𝑒𝑠𝑎𝑟)

6. ∀𝑥: ∃𝑦: 𝑙𝑜𝑦𝑎𝑙𝑡𝑜 𝑥, 𝑦

7. ∀𝑥: ∀𝑦: 𝑝𝑒𝑟𝑠𝑜𝑛 𝑥 ∧ 𝑟𝑢𝑙𝑒𝑟 𝑦 ∧ 𝑡𝑟𝑦𝑎𝑠𝑠𝑎𝑠𝑠𝑖𝑛𝑎𝑡𝑒 𝑥, 𝑦 → ¬𝑙𝑜𝑦𝑎𝑙𝑡𝑜 𝑥, 𝐶𝑎𝑒𝑠𝑎𝑟

8. 𝑡𝑟𝑦𝑎𝑠𝑠𝑎𝑠𝑠𝑖𝑛𝑎𝑡𝑒 𝑀𝑎𝑟𝑐𝑢𝑠, 𝐶𝑎𝑒𝑠𝑎𝑟

9. ∀𝑥:𝑚𝑎𝑛 𝑥 → 𝑝𝑒𝑟𝑠𝑜𝑛(𝑥)

www.iitkirba.xyz

FIRST-ORDER LOGIC (PREDICATE LOGIC)

9/13/2025 Predicate Logic 33

↓
𝑛𝑖𝑙

𝑚𝑎𝑛(𝑀𝑎𝑟𝑐𝑢𝑠)

𝑝𝑒𝑟𝑠𝑜𝑛(𝑀𝑎𝑟𝑐𝑢𝑠)

𝑝𝑒𝑟𝑠𝑜𝑛 𝑀𝑎𝑟𝑐𝑢𝑠 ∧ 𝑡𝑟𝑦𝑎𝑠𝑠𝑎𝑠𝑠𝑖𝑛𝑎𝑡𝑒(𝑀𝑎𝑟𝑐𝑢𝑠, 𝐶𝑎𝑒𝑠𝑎𝑟)

𝑝𝑒𝑟𝑠𝑜𝑛 𝑀𝑎𝑟𝑐𝑢𝑠 ∧ 𝑡𝑟𝑦𝑎𝑠𝑠𝑎𝑠𝑠𝑖𝑛𝑎𝑡𝑒 𝑀𝑎𝑟𝑐𝑢𝑠, 𝐶𝑎𝑒𝑠𝑎𝑟 ∧ 𝑟𝑢𝑙𝑒𝑟(𝐶𝑎𝑒𝑠𝑎𝑟)

¬𝑙𝑜𝑦𝑎𝑙𝑡𝑜(𝑀𝑎𝑟𝑐𝑢𝑠, 𝐶𝑎𝑒𝑠𝑎𝑟)

↓

↓

↓

↓

(1)

(9)

(8)

(4)

(7, Substitution)

www.iitkirba.xyz

FIRST-ORDER LOGIC (PREDICATE LOGIC)

9/13/2025 Predicate Logic 34

↓
¬𝑙𝑜𝑦𝑎𝑙𝑡𝑜(𝑀𝑎𝑟𝑐𝑢𝑠, 𝐶𝑎𝑒𝑠𝑎𝑟)

(2)

2. Was Marcus hates Caeser?

𝑃𝑜𝑚𝑝𝑒𝑖𝑎𝑛 𝑀𝑎𝑟𝑐𝑢𝑠 ¬𝑙𝑜𝑦𝑎𝑙𝑡𝑜(𝑀𝑎𝑟𝑐𝑢𝑠, 𝐶𝑎𝑒𝑠𝑎𝑟)

↓ (3)

𝑅𝑜𝑚𝑎𝑛 𝑀𝑎𝑟𝑐𝑢𝑠 ¬𝑙𝑜𝑦𝑎𝑙𝑡𝑜(𝑀𝑎𝑟𝑐𝑢𝑠, 𝐶𝑎𝑒𝑠𝑎𝑟)

↓ (53)

ℎ𝑎𝑡𝑒(𝑀𝑎𝑟𝑐𝑢𝑠, 𝐶𝑎𝑒𝑠𝑎𝑟)

1. 𝑚𝑎𝑛(𝑀𝑎𝑟𝑐𝑢𝑠)

2. 𝑃𝑜𝑚𝑝𝑒𝑖𝑎𝑛 𝑀𝑎𝑟𝑐𝑢𝑠

3. ∀𝑥: 𝑃𝑜𝑚𝑝𝑒𝑖𝑎𝑛 𝑥 → 𝑅𝑜𝑚𝑎𝑛(𝑥)

4. 𝑟𝑢𝑙𝑒𝑟(𝐶𝑎𝑒𝑠𝑎𝑟)

5. ∀𝑥: 𝑅𝑜𝑚𝑎𝑛 𝑥 →

𝑙𝑜𝑦𝑎𝑙𝑡𝑜 𝑥, 𝐶𝑎𝑒𝑠𝑎𝑟 ∨

ℎ𝑎𝑡𝑒 (𝑥, 𝐶𝑎𝑒𝑠𝑎𝑟)

6. ∀𝑥: ∃𝑦: 𝑙𝑜𝑦𝑎𝑙𝑡𝑜 𝑥, 𝑦

7. ∀𝑥: ∀𝑦: 𝑝𝑒𝑟𝑠𝑜𝑛 𝑥 ∧ 𝑟𝑢𝑙𝑒𝑟 𝑦 ∧

𝑡𝑟𝑦𝑎𝑠𝑠𝑎𝑠𝑠𝑖𝑛𝑎𝑡𝑒 𝑥, 𝑦 →

¬𝑙𝑜𝑦𝑎𝑙𝑡𝑜 𝑥, 𝐶𝑎𝑒𝑠𝑎𝑟

8. 𝑡𝑟𝑦𝑎𝑠𝑠𝑎𝑠𝑠𝑖𝑛𝑎𝑡𝑒 𝑀𝑎𝑟𝑐𝑢𝑠, 𝐶𝑎𝑒𝑠𝑎𝑟

9. ∀𝑥:𝑚𝑎𝑛 𝑥 → 𝑝𝑒𝑟𝑠𝑜𝑛(𝑥)

www.iitkirba.xyz

REPRESENTING INSTANCE AND ISA RELATIONSHIPS

9/13/2025 Predicate Logic 35

 Specific attributes instance and isa play important role particularly in a useful form of

reasoning called property inheritance.

 The predicates instance and isa explicitly captured the relationships they are used to express,

namely class membership and class inclusion.

 Fig. 4.2 shows the first five sentences of the last section represented in logic in three different

ways.

 The first part of the figure contains the representations we have already discussed. In these

representations, class membership is represented with unary predicates (such as Roman), each

of which corresponds to a class.

 Asserting that P(x) is true is equivalent to asserting that x is an instance (or element) of P.

 The second part of the figure contains representations that use the instance predicate explicitly.

www.iitkirba.xyz

REPRESENTING INSTANCE AND ISA RELATIONSHIPS

9/13/2025 Predicate Logic 36

www.iitkirba.xyz

REPRESENTING INSTANCE AND ISA RELATIONSHIPS

9/13/2025 Predicate Logic 37

 The predicate instance is a binary one, whose first argument is an object and whose second

argument is a class to which the object belongs.

 But these representations do not use an explicit isa predicate.

 Instead, subclass relationships, such as that between Pompeians and Romans, are described as

shown in sentence 3.

 The implication rule states that if an object is an instance of the subclass Pompeian then it is

an instance of the superclass Roman.

 Note that this rule is equivalent to the standard set-theoretic definition of the subclass-

superclass relationship.

 The third part contains representations that use both the instance and isa predicates explicitly.

 The use of the isa predicate simplifies the representation of sentence 3, but it requires that one

additional axiom (shown here as number 6) be provided.

www.iitkirba.xyz

COMPUTABLE FUNCTIONS AND PREDICATES

9/13/2025 Predicate Logic 38

It may be necessary to compute functions as part of a fact. In these cases a computable predicate

is used. A computable predicate may include computable functions such as +, -, *, etc. For

example, gt(x-y,10) →bigger(x) contains the computable predicate gt which performs the greater

than function. Note that this computable predicate uses the computable function subtraction.

Example: Consider the following statements:

1. Marcus was a man.

2. Marcus was Pompeian.

3. Marcus was born in 40 A.D.

4. All men are mortal.

5. All Pompeians died when the volcano erupted in 79 A.D.

6. No mortal lives longer than 150 years.

7. It is now 2024.

8. Alive means not dead.

9. If someone dies, he is dead at all later times.

www.iitkirba.xyz

COMPUTABLE FUNCTIONS AND PREDICATES

9/13/2025 Predicate Logic 39

1. Marcus was a man.

man(Marcus)

2. Marcus was Pompeian.

Pompeian(Marcus)

3. Marcus was born in 40 A.D.

born(Marcus,40)

4. All men are mortal.

∀x: man(x) → mortal(x)

5. All Pompeians died when the volcano erupted in 79 A.D.

6. No mortal lives longer than 150 years. 7. It is now 2024.

8. Alive means not dead.

9. If someone dies, he is dead at all later times.

erupted(volcano,79) /\ ∀x: Pompeian(x) → died(x,79)

∀x ∀t1 ∀t2: mortal(x) /\ born(x,t1) /\ gt(t2-t1,150) → dead(x,t2) now=2024

∀x ∀t: [alive(x,t) → ~dead(x,t)] /\ [~dead(x,t) →alive(x,t)]

∀x ∀t1 ∀t2:died(x,t1) /\ gt(t2,t1) →dead(x,t2)

www.iitkirba.xyz

COMPUTABLE FUNCTIONS AND PREDICATES

9/13/2025 Predicate Logic 40

Suppose we want to answer the question “Is Marcus alive now?”. We can do this by either

proving alive(Marcus, now) or ~alive(Marcus, now).

~alive(Marcus, now)

↓ 8

~[~dead(Marcus, now)]

↓ negation operation

dead(Marcus, now)

↓ 9

died(Marcus,t1) /\ gt(now,t1)

↓ 5

erupted(volcano,79) /\ Pompeian(Marcus) /\ gt(now,79)

↓fact, 2

gt(now,79)

↓

gt(1991,79)

↓ compute gt

nil
www.iitkirba.xyz

RESOLUTION

9/13/2025 Predicate Logic 41

In the previous sections facts were proved or queries were answered using backward chaining. In

this section we will examine the use of resolution for this purpose. Resolution proves facts and

answers queries by refutation. This involves assuming the fact/query is untrue and reaching a

contradiction which indicates that the opposite must be true.

Algorithm: Converting wffs to Clause Form

1. Remove all implies, i.e. → by applying the following: a → b is equivalent to ~a \/ b.

2. Use the following rules to reduce the scope of each negation operator to a single term:

• ~(~a) = a

• ~(a /\ b) = ~a \/ ~b

• ~(a \/ b) = ~a /\ ~b

• ~∀x: p(x) = ∃x: ~p(x)

• ~∃x: p(x) = ∀x: ~p(x)

3. Each quantifier must be linked to a unique variable. For example, consider ∀x: p(x) \/ ∀x:

q(x). In this both quantifiers are using the same variable and one must changed to another

variable: ∀x: p(x) \/ ∀y: q(y).
www.iitkirba.xyz

RESOLUTION

9/13/2025 Predicate Logic 42

3. Move all quantifiers, in order, to the left of each wff.

4. Remove existential quantifiers by using Skolem constants or functions. For

example, ∃x: p(x) becomes p(s1) and ∀x ∃y: q(x,y) is replaced with ∀x: q(s2(x), x).

5. Drop the quantifier prefix.

6. Apply the associative property of disjunctions: a \/ (b \/ c) = (a \/ b) \/ c and remove

brackets giving a \/ b \/ c.

7. Remove all disjunctions of conjunctions from predicates, i.e. create conjunctions of

disjunctions instead, by applying the following rule iteratively: (a /\ b) \/ c = (a \/ c)

/\ (b \/ c).

8. Create a separate clause for each conjunction.

9. Rename variables in the clauses resulting from step 9 to ensure that no two clauses

refer to the same variable.

www.iitkirba.xyz

RESOLUTION

9/13/2025 Predicate Logic 43

Algorithm: Resolution

1. Convert the wffs to clause form.

2. Add the fact (or query) P to be proved to the set of clauses:

i. Negate P.

ii. Convert negated P to clause form.

iii. Add the result of ii to the set of clauses.

3. Repeat

i. Select two clauses.

ii. Resolve the clauses using unification.

iii. If the resolvent clause is the empty clause, then a contradiction has been reached. If

not add the resolvent to the set of clauses.

Until (a contradiction is found OR no progress can be made)

www.iitkirba.xyz

RESOLUTION

9/13/2025 Predicate Logic 44

Consider the following wffs:

1. man(Marcus)

2. Pompeian(Marcus)

3. ∀x: Pompeian(x) → Roman(x)

4. ruler(Caesar)

5. ∀x: Roman(x) → loyalto(x,Caesar) \/ hate(x,Caesar)

6. ∀x ∃y: loyalto(x,y)

7. ∀x ∀y: person(x) /\ ruler(y) /\ tryassassinate(x,y) → ~loyalto(x,y)

8. tryassassinate(Marcus,Caesar)

9. ∀x: man(x) → person(x)

Converting these to clause form gives:

1. man(Marcus)

2. Pompeian(Marcus)

3. ~Pompeian(x) \/ Roman(x)

4. ruler(Caesar)

5. ~Roman(x1) \/ loyalto(x1,Caesar) \/ hate(x1,Caesar)

6. loyalto(x2,s1(x2))

7. ~person(x3) \/ ~ruler(y) \/ ~tryassassinate(x3,y) \/ ~loyalto(x3,y)

8. tryassassinate(Marcus, Caesar)

9. ~man(x4) \/ person(x4) www.iitkirba.xyz

RESOLUTION

9/13/2025 Predicate Logic 45

Suppose that we want to prove that Marcus hates Caesar. We firstly convert this to a wff:

hate(Marcus,Caesar). The wff is then negated and converted to clause form:

~hate(Marcus,Caesar).

~hate(Marcus,Caesar)

↓ 5

~Roman(Marcus) \/ loyalto(x1,Caesar)

↓ 3

~Pompeian(Marcus) \/ loyalto(Marcus,Caesar)

↓ 2

loyalto(Marcus,Caesar)

↓ 7

~person(Marcus) \/ ~ruler(Caesar) \/ ~tryassassinate(Marcus,Caesar)

↓ 4

~person(Marcus) \/ ~tryassassinate(Marcus,Caesar)

↓ 8

~person(Marcus)

↓ 9

~man(Marcus)

↓ 1

□ www.iitkirba.xyz

RESOLUTION

9/13/2025 Predicate Logic 46

Consider the wffs we created above:

1. man(Marcus)

2. Pompeian(Marcus)

3. born(Marcus,40)

4. ∀x: man(x) → mortal(x)

5. erupted(volcano,79) /\ ∀x: Pompeian(x) → died(x,79)

6. ∀x ∀t1 ∀t2: mortal(x) /\ born(x,t1) /\ gt(t2-t1,150) → dead(x,t2)

7. now=1991

8. ∀x ∀t: [alive(x,t) → ~dead(x,t)] /\ [~dead(x,t) →alive(x,t)]

9. ∀x ∀t1 ∀t2:died(x,t1) /\ gt(t2,t1) →dead(x,t2)

Suppose we now want to use resolution to prove that “Marcus is not alive now”. We firstly have

to convert these statements to clause form:

1. man(Marcus)

2. Pompeian(Marcus)

3. born(Marcus,40)

4. ~man(x) \/ mortal(x)

5. erupted(volcano,79)

6. ~Pompeian(x1) \/ died(x1,79)

7. ~mortal(x2) \/ ~born(x2,t1) \/ ~gt(t2-t1,150) \/ dead(x2,t2)

8. now=1991

9. ~alive(x3,t) \/ ~dead(x3,t)

10. dead(x4,t3) \/ alive(x4,t3)

11. ~died(x5,t4) \/ ~gt(t5,t4) \/ dead(x5,t5

www.iitkirba.xyz

RESOLUTION

9/13/2025 Predicate Logic 47

We want to prove ~alive(Marcus,now). We negate this and convert it clause form:

alive(Marcus, now) and find a contradiction:

alive(Marcus,now)

↓10

dead(Marcus,now)

↓11

~died(Marcus,t4) \/~gt(now,t4)

↓6

~Pompeian(Marcus) \/~gt(now,79)

↓ 2

~gt(now,t4)

↓8

~gt (1991,79)

↓

□

www.iitkirba.xyz

RESOLUTION

9/13/2025 Predicate Logic 48

1. Consider the following facts:

1. John likes all kinds of food.

2. 2. Apples are food.

3. Chicken is food

4. Anything anyone eats and is not killed by is food.

5. Bill eats peanuts and is still alive.

6. Sue eats everything Bill eats.

a) Convert the wffs for these facts to clause form.

b) Using resolution prove that “John likes peanuts”.

2. Consider the following facts:

1. Steve only likes easy courses.

2. Science courses are hard.

3. All the courses in the basketweaving department are easy.

4. BK301 is a basketweaving course.

a) Convert the wffs for these facts to clause form.

b) Use resolution to answer the question “What course would Steve like?”.

www.iitkirba.xyz

