VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY (VSSUT), ODISHA Odd Mid Semester Examination for Academic Session 2025-26

SEMESTER: 5th COURSE NAME: B.Tech. IT BRANCH NAME: CSE SUBJECT NAME: Data Mining and Data Warehousing TIME: 90 Minutes FULL MARKS: 30 Answer All Questions. The figures in the right hand margin indicate Marks. Symbols carry usual meaning. $[2 \times 3]$ Answer all Questions. Q1. Differentiate classification and prediction task. - CO1 Define Support, Support count, and Confidence with respect to Frequent itemset and - CO2 Association rule? What is posteriori probability in the context of Naïve-Bayes classification? - CO3 [8] Q2. - CO1 A. Explain these Data Mining Functionalities: i) Classification, ii) Cluster Analysis, iii) Prediction, iv) Concept description. B. Discuss architecture of Data mining system with its all components. Use suitable block 4 diagram. OR - CO1 C. Explain the KDD process with suitable example. D. Discuss Supervised machine learning and Unsupervised machine learning with suitable example. [8] Q3. - CO2 A. Find frequent itemset and strong association rule from the give data (Table D) using FP growth algorithm, If the minimum confidence threshold is, say, 90%, and minimum support is 30%. OR CO₂ B. Find frequent itemset and strong association rule from the give data (below) using Apriori algorithm, If the minimum confidence threshold is, say, 90%, and minimum support is 30%.

Table D
Transactional Data for an AllElectronics
Branch

TID	List of item_IDs
T100	11, 12, 15
T200	12, 14
T300	12, 13
T400	11, 12, 14
T500	I1, I3
T600	12, 13
T700	11, 13
T800	11, 12, 13, 15
T900	11, 12, 13

Q4.

[8]

- CO3

A. Use the data given in Dataset (in Table 1) and design a Decision tree classification model. Here, the "age", "income", "student", "credit_rating" are input attributes and "buys_computer" is the output attribute. Then, classify following data in to buys_computer "yes"/"no": X = (age 31.40, Income = low, Student = no, Credit_rating = Fair)

Table 1

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no :	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no 🚚
3140	low -	> yes	excellent	yes 🦟
<=30	medium	no -	fair	z no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

OR

- CO3

B. Design a regression model using KNN from the given data and predict House Price Index from the given data (Age = 48, Loan = USD 150,000). Consider k = 3.

Age	Loan Ho	use Price Index
25	\$40,000	135
35	\$60,000	256
45	\$80,000	231
20	\$20,000	267
35	\$120,000	139
52	\$18,000	150
23	\$95,000	127
40	\$62,000	216
60	\$100,000	139
48	\$220,000	250
33	\$150,000	264