VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY (VSSUT), ODISHA

ODD Mid Semester Examination for session 2025-26 1st Semester.

B Tech (All Branches)

Subject- MATHEMATICS- I

Full Mark-30

Time-90 Minutes

Answer All Questions.

The figure on the right hand margin indicates marks. Symbols carry usual meaning.

1. Answer the following questions.

[2×3]

a). Find length of curve $x = 5 \cos^3 2t$, $y = 5 \sin^3 2t$, $0 \le t \le \pi/2$

-CO1

b) Find value of $\Gamma\left(\frac{13}{2}\right)$ applying propoerties of gamma function.

-CO₂

c) Test convergence of $\int_{1}^{\infty} \frac{dx}{x \log x}$

-CO1 [4+4]

- a) Find the surface area generated by revolving curve $y = x^3$, $0 \le x \le 1$ about X-axis. -CO1
- b) Test the convergence of $\int_{-\infty}^{\infty} \frac{4\cos^3 x 3\cos x}{x^3} dx$

-CO1

(a) The region bounded by $y=\sqrt{9-x^2}$ and x-axis revolved about x-axis. Find volume of the solid.

-CO1

(b) Test the convergence of $\int_{-x^3}^{\infty} \frac{(1+e^x)\sin x}{x^3} dx$

-CO1

(a) Find the local maxima and local minima of $f(x) = (x-2)^4 (x+1)^4$

[4 + 4]

(b) Prove that $\Gamma(n+1) = n \Gamma(n)$.

3.

-CO2 -CO₂

OR

(a) State Rolle's theorem and discuss suitability of Rolle's theorem to find point on the curve $y = \cos 2x - 1$ in $[\pi/2, 5\pi/2]$ at which tangent is parallel to x-axis.

(b) Using relation between beta and gamma function prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$.

-CO2 [4 + 4]

(a). Find Taylor series of $f(x) = e^{-2x} \cos 3x$, about point $x = \pi$.

-CO2

Test convergence of $\int_a^\infty \frac{\sin x}{\sqrt{x}}$. (b)

-CO1

OR

Find the Maclaurin series of $f(x) = \sin 5x + C \cos 5x$. (a).

-CO2

Evaluate $\int_0^\infty e^{2ax-x^2} dx$ using gamma fuction. (b)

-CO1