22 20 3 t

VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY (VSSUT), ODISHA Odd Mid-Semester Examination for Academic Session 2025-26

COURSE NAME:BTECH

SEMESTER:III

BRANCH NAME: ALL

SUBJECT NAME: MATH-III

FULL MAI	RKS: 30	
FULL WAY	TIN	IE: 90 Minutes
	AUSWOR All Questions	
Q1.	The figures in the right hand margin indicate Marks. Symbols carry usual meaning. Answer all Ouestions	
	(and only	$[2 \times 3]$
A)	Find the Laplace transform of 3'.	- CO1
	Find the Fourier coefficients a_0 and a_2 from the Fourier series expansion of	- CO2
	$f(x) = \sin^2 x, -\pi < x < \pi.$	700
c)	If A and B are independent events then show that A and B^c are also independent.	- CO3
Q2.	,	[4+4]
a	Find the inverse Leuless towns of F(s)	- CO1
	Find the inverse Laplace transform of $F(s) = \frac{1}{s^2(s^2 - a^2)}$.	place - CO1
188	Solve the initial value problem $y'' + 16y = 4\delta(t - \pi)$, $y(0) = 2$, $y'(0) = 0$ using Laptone form	place - COI
	transform.	
c)	OR	- CO1
,	Find the Laplace transform of $f(t) = \begin{cases} \sin t; \ 0 < t < \pi \\ t; \ t > \pi \end{cases}$.	
d)	,	- CO1
	Solve the integral equation $y = 1 - \sinh t + \int_{0}^{\infty} (1+\tau)y(t-\tau)d\tau$ by using convolution.	ra : 41
Q3.		[4+4] - CO2
E ST	Find the Fourier series expansion of the function $f(x) = x$, $0 < x < 2\pi$.	
b)	Solve the following initial boundary value problem $u_{tt} = c^2 u_{xx}$, $0 < x < 1$, $t > 0$,	- CO2
	where $u(x,0) = x(1-x), u_t(x,0) = 0, 0 \le x \le 1$ and $u(0,t) = 0 = u(1,t), t > 0$. OR	
1		- CO2
	Find the Fourier series expansion of the function $f(x) = \begin{cases} x, 0 < x < 1 \\ 1 - x, 1 < x < 2 \end{cases}$ with positive function $f(x) = \begin{cases} x, 0 < x < 1 \\ 1 - x, 1 < x < 2 \end{cases}$	riod
2002	P=2L=2.	- CO2
A	By using method of separation of variables solve $3u_x + 2u_y = 0$, $u(x,0) = 4e^{-x}$.	- 002
Q4.		[4+4]
a)	A coin is tossed until a head appears. What is the expectation of the number of to required?	osses - CO3
b)	If X has the probability density $f(x) = \begin{cases} k.e^{-3x} & for \ x > 0 \\ 0 & elsewhere \end{cases}$. Find k and $P(0.5 \le X \le 1)$	- CO3
	OR	
c		
	15 boys and 10 girls; section B has 20 boys and 25 girls; section C has 10 boys and 20 girls	s. A

d) Construct a cumulative distribution function for the probability density function - CO3 f(x) = kx(1-x) for 0 < x < 1 and 0, otherwise. (-1 (EF+ a) O (H-12) = 0 = (S) =

section is chosen randomly and a student is selected. What is the probability that the student is

a boy? Also find the probability that the boy is from section B.

www.veerpreps.com