
CHAPTER - I 0

FILE MANAGEMEMT

-,t
ti,.
&0.1 Overview
Computers can store the information on different storage media, such as magnetic
;ltkH, tapes, compact disks. The physical storage is converted in to a logical storage
Unit by operating system. The logical storage unit is said to be the 'file'. File s are

ppcd by the operating system ,onto physical devices. A file is a collection of similar
ftcords , ·with a common name. A record is a collection of related fields that can be

. troa.ted as a unit by some application program. A field is the son:ie basic element of
iata. Any individual field contains single value. A data base is a collection of related

, data'. cons~der the figure 10.1 to illustrate the file.

Student number Name Marks in Marks in Marks in Fail/pass
SUBl SUB2 SUBJ

1001 RAM 65 73 34 F

1002 RABERT 56 63 72 p

1003 ~KUMAR 45 65 53 p

1004 JANI 60 71 81 p

Figure 10.1 A Data File

Student number ,name, marks in SUB 1, marks in SUB2, marks in SUB3, fail or
pass these are the fields (or) data element. The collection of these data elements is
called a record.

For example

I 1003 I KUMAR 45 65 53 p

10.1 Record

10.2 0 Operating Systems and Systems Programming

Collection of these records called a data files. A data base may contain all of the
information related to an organization or project, such as a business or a scienti fie
study. So a data base consisting of different types of data files.

Operations on data base files
Retrieve -all:This command retrieve the all records of a file. It must be useful to

perfonn the operations on the entire file (all records)at a time. For example we want
to delete all the records in the student data base file this command is useful at that
time.

Retrieve-one: This command retrieves one record at a time, interactive, transaction
oriented applications needs this command. Suppose we want to modify a single record

or delete a single record at that time we were using.

Retrieve- next:This command retrieves the next record , which is in the next
record to the recently retrieved one. Some interactive applications, such as filling in
forms, may require such operation.

Retrieve-previous: This command retrieve the previous record, which is the previous
record to the recently retrieved one.

Insert-one: Insert a new record to the exiting data base file.

Delete-one: Delete an exiting record, which is specified by the user.

Update-one: Retrieve a record, update one or more of its fields, and rewrites the
updated record back into the file.

Retrieve - few: Retrieve a number of records. For example an application or user
may wish to retri~ve all records that satisfy a certain set of criteria.

Operations .2n programmable files: The basic operations of the programmable
files are create a file, writing a file, reading a file, repositioning with in a file, deleting
a file and truncating a file. The operating system provides system calls to create

' write, read, reposition, delete and truncate files.

Creating a file: Two steps are needed to create a file. First one is check weather
the space is available or not. If the space is available then made an entry for the new
file must be made in the directory. The entry includes name oftre file, path of the file
etc.

Writing a file: To write a file, we have to know two things one is name of the file and
second is the information or data to be written on the file, the system searches the
en tired given locations for the file. If the file is found, the system must keep a write
pointer to the location in the file where the next write is to take place.

Reading a file: To read a file , first of all we search the directories for the file, if the
file is found , the system needs to keep a 'read' pointer to the location in the file
where the next read is to take place.once the read has taken place , the read pointer
is updated.

File Management 0 10.3

Ht•positioning with in a file: This file operation is also known as file seek. The
il1rc-ctory is searched for the appropriate entry, and current file position is set to a
l!. I vcn value.

lh·h·Cing files: To delete a file, first of all search the directory for named file, then
, 1•lrascd the file space and erase the directory entry.

I runcating a file: To truncate a file, remove the file contents only, but the attributes
,1u· as it is.

I· lh· uttributes: Name, type, location, size, protection, time, date, user identification
tlu·st· are the attributes of a file.

N" 111c: A file is named, for the convenience of the user, and is referred to by its
11ui11c. A name is usually a string of characters. The symbolic file name is the only
it1f,u·1nation kept in human readable form.

Type: Files are so many types, the type is depending on the extension of the file. For
PKntnple

• .exe : executable file.
• .obj : object file.
• .src : source file.

l,c,cution: This information is a pointer to a device and to the location of the file on
lhht device.

Mlt.t: The current size of the file(in bytes, blocks)

ltrotcction: It specifies the access -control information. It controls who can do
lthding, writing, executing and so on. -thnc: It specifies time of creation.
l)euc.·: It specifies the file created date.
l 111l•r identification: This is useful for protection security and usage monitoring.
tr'lh· types: generally the name of the file spilt in to two parts one is name and
•erond is extension. The file type i~ depending on extension of the file. For example
ltt MS-DOS a name can allowed up to 8 characters followed by a period and
lrnninated by an up to three characters extension. For example consider the figure
IO. 2 it displays the file types.

File type Extension Purpose/function

Executable .exe Ready to run (or)

.com ready to run machine

.bin language program.

ornone
Figure 10.2 Common file types

10.4 0 Operating Systems and Systems Programming

Source code .c
. .

Source code in various

. cpp languages .

.pas

.asm

.f77

Batch .bat Commands to the

. sh command interpreter .
Text .txt Textual data

.doc documents
Word processor .wp Various word

.rrf processor format

.etc
Library .lib Libraries of routines

. a for programmers .

Point (or) view .ps ASCII or binary file in
.dvi a format for printing or

.sif v1ew1ng.

Archive .arc Grouped files ,
.

; .. .Zip compressed files for

. tor archiving or storage .

Figure 10.2 common file types, continued

10.2 File management system
A file management system (FMS) is a collection of system software programs that
provides services to the users. For example the user want to create a file ,delete file,
it must be done through the FMS. Generally the objectives of the file management
system are

• To provide the 1/0 support for multi users.

• To provide a standardize set of 1/0 interface routines.

• Storage of data.
• To optimize performance.
• To provide I/0 support for a variety of storage device types.

To guarantee that the data in the file are valid.

File Management

File system architecture
Consider the figure 1 o 3 ·t d • • ' 1 epicts the file system architecture.

(___ u_s_ed_p_ro_g_ra_m _______ J
Fiqure 10.3

Sequential Indexed sequential Indexed

Logical 1/0

Basic 1/0 supervisor

Basic file system

Disk. device driver Tape device driver

0 10.5

Hashed

At the lowest level, device drivers communicate directly with peripheral devices
or their controllers or channels. A device driver is responsible for starting VO operations
on device and processing the completion of 1/0 request. The next level is the 'Basic
file· system'. It is the interface with the environment outside of the computer system.
The 'basic 1/0 supervisor' is responsible for all file I/O initiation and termination.
' Logical 1/0 ' enables users and applications to access records.

10·.3 File accessing methods
Files stores inf.'1rmation , this information must be accessed and read in to computer
memory. There are so many·~ays that the.information in the file can be accessed.

1. ' • 1 sequent1a access,.
2. Direct access.
3. Indexed sequential access.

10.3.1 Sequential file ~ss
This method is the simplest "'of all methods. Information in the file is processed in
order, one record a.~~r the other. Magnetic tapes are supporting this type of file
accessing. For example a file consisting of I 00 records, the current position of read/
write head is 45th record , suppose we want to read the 75 th record then it access
sequentially from 45,46,47 73, 74, 75. So the read/write head traverse all the
records between 45 to 75. Consider the figure 10.4 for better understanding.

10.6 0 Operating Systems and Systems Programming

Beginning Current position Target record end

'I
I

JIii

0 45 75 100

Figure 10.4 Sequential file access

Sequential files are typically used in batch applications and payroll applications.

10.3.2 Direct access
Direct access is also called relative access. In this method records can read /write
randomly with out any order. The direct access method is based on a disk model of a
file, because disks allow random access to any file block. A direct access file allows
arbitrary blocks to be read or written. For example a disk consisting of 256 blocks, the
current position of read/write head is at 95th block. The block to be read or write is
250th block. Then we can access the 250th block directly without any restrictions.
B~st example for direct access is a ~D consisting of 10 songs, at present \Ye are
listening the song no:3, suppose we want listening the song no:9then we can shift
from song no: 3 to 9 with out any restrictions.

10.3.3 Indexed sequential file
The main disadvantage in the sequential file is, it takes more time to access a record,
we can overcome this problem in this method. Records are organized in sequence
based on a key field. For better understanding consider the figure 10.5.

For suppose a file consisting of 60,000 records, the master index divide the total
records in to 6 blocks~each block consisting of a pointer to secondary index. The
secondary index divide the 10,000 records in to 10 indexes. Each index consisting of
a pointer to its original location. Each record in the index file consisting of two fields.
A key field and a pointer field. Suppose we want to access the 55,550th record . the
FMS access the index that is 50,000 to 60,000, this block consisting of a pointer, this
pointer points to the 6th index in the secondary index. This index points to the original
location of the record from 55,000 to 56,000. From this it follows the sequential method.
That's why this method is said to be the indexed sequential file. Generally indexed
files are used in airline reservation systems and payroll systems.

l
I

File Management 0 10.7

0
0-1000 .

1000-2000

2000-3000

3000-4000

4000-5000

5000-6000

6000-7000

7000-8000

8000-9000

9000-10,000

0-10,000

10,000-20,000

20,000-30,000 ,, .
30,000-40,000

40,000-50,000
50,000-51,000

50,000-60,000
51,000-52,000

MASTER INDEX 52,000-53,000

; 53,000-54,000

54,000-55,000

·5s,ooo-56,ooo

56,000-57,000

57,000-58,000

58,000-59,000

59,000-60,000

Secondary Index
60,000

Physical locations

Figure 10. 5 Indexed sequential file

10.4 File directories
The directory contains information about the files , including attributes , locations

1nd ownership. Some times the directories consisting of subdirectories also. The
directory is it self a file, owned by the operating system and accessible by various file
n1nnagement routines.

10.8 0 Operating Systems and Syst~ms Programming

Directory structure . · ·t ·s very
Sbme times the file system consisting of millions of files, at that situation i i

hard to manage the files. To manage these files grouped these file~ and load one

group in to one partition. Each partition is called a directory: Th_e directory ~an be

viewed as a symbol table that translate filenames in to their dir~ctory entnes. A

directory structure provides a mechanism for organizing many files m the file syStem.

Operations on the file directories:

The operations that can be performed on a directory are as foJ1ows.

Search for a file: Search the directory structure for required file.

Create a file:

Delete a file:

List a directory:
Rename a file:

Traverse the file system:

Whenever we create a file , should make an entry

in the directory.
When a file is no longer needed, we want to remove

it from the directory.
We can know the list of files in the directory.

whenever we need to change the name of the file

we can change the name.

We need to access every directory , and every file
with in a directory structure we can traverse the
file system.

Single level directory system
It is simplest of all directory structures, in this the directory system having only one

directory, it consisting of the all files. Some times it is said to be ' Root directory'. For

example consider the fi,~ure I 0.6. here is directory contains 4 files (A,B,C,D)

Root directory

Figure 10.6 Single level directory

The advantage of this scheme are its simplicity and the ability to locate files

quickly. The problem with single level directory is different users may accidentally

use the same names for their files., for example, if user I creates a file called sample,

and then later user2 creates a file called sample, then user2 's file will overwrite A's

file. That's why it is not used in the multi-user system, it is used on small embedded

system.

File Management 0 10.9

Two-level directory structure
The problem in single level directory is different users may be accidentally use the
same names for their files. To avoid this problem each user need a private directory.
In this way names chosen by one user don't interfere with names chosen by a
different user and there is no problem caused by the same occurring in two or more
directories. Consider the figure l 0. 7 for better understanding.

Root directory

USER 1 USER2 USER3

Figure 10. 7 A two level directory system

Here root directory is the first level directory . it consisting of entries of' user directory.
Userl, user2,user3 are the user levels of directories. A,B,C are the files.
Hierarchical directory system
The two-level directory eliminates name conflicts among usets but it is not satisfactory
for users with a large number of files. To avoid this creates the subdirectory and load
the same type of files in to the subdirectory. So in this method .each can have as many
directories are needed. Consider the figure I 0.8 for better nnderstanding.

Sub-sub
directory

USER 1

Sub directory

Sub-sub
directory

Root
directory

USER2 USER3

Sub directory

Sub-sub
directory

Figure 10.8 A hierarchical directory system

Sub-sub
directory

10.10 0 Operating Systems and Systems Programming

This directory structure looks like tree, that's why it is also said to be tree-level

directory structure'.

General graph directory structure .
When we add links to an existing tree structured directory , the tree structure 1s
destroyed, resulting in a simple graph structure. Consider the figure I 0.9 for better
understanding. The primary advantage of this structure is traversing is easy and file
sharing also possible.

Sub-sub
directory

USER1

Sub directory

Sub-sub
directory

Root
directory

USER2 USER3

.
Sub directory

Sub-sub
directory

Sub-sub
directory

Figure 10.9 Graph directory structure.

10.5 File allocation methods
Files are normally stored on the disks, so the main problem is how to allocate space to
these files so that disk space is utilized effectively and files can be accessed quickly.
Three major methods of allocating disk space are in wide use: contiguous, linked and
indexed. Each method has its advantages and disadvantages.

-10.5.1 Contiguous allocation
ln this allocation method each file occupies a set of contiguous blocks on the disk. For
example a disk consisting of 1 kb blocks. A 100 kb file would be allocated I 00
consecutive blocks. With 2kb blocks, it would be allocated 50 consecutive blocks.
Consider the figure I 0.10 for better understanding.

File Management 0 10.11

File allocation table
File name Start name length

A 21 5
B 3 10
C 35 7

I
I I I I 7 8 10 11 12 13

I I I I L_] I I 14 15 16 17 18 19 20

I I 1 I 126
I I I I I : 21 22 23 24 25 27

I I I I I I I I 28 29 30 31 32 33 34

I I I I I I I I : 35 36 37 38 39 40 41
I I I I I I 42 43 44 45 46 47 48

Figure 10.10 : Contigous File allocation

In the figure the right hand side part is the file allocating table' it consisting of a single entry for each file. It shows the file names starting block of the file and size of the file. For example file B size is 10 blocks., the file B stored from 3 to 13 blocks continuously. This method is best suited for sequential files. The main problem in this is it is difficult to find the contiguous free blocks in the disk. Another problem is external fragmentation, it means some free blocks could happen between two files.

I 0.5.2 Linked allocation
We can avoid the external fragmentation in this scheme. And also it is easy to locate the files , because allocation is on an individual block basis. Each block contains a pointer to the next free block in the chain. Here also the file allocation table consisting of a single entry for each file. Using this method any free block can be added to a

10.12 0 Operating Systems and Systems Programming

chain very easily. There is a link between one block.to another block, that's why it is
said to be linked allocation. Consider the figure 10.11 for better understand.

11 I I 11 I I II
0 1 2 3 4 5

I I 11
0 11 12

11 I I I I II
14 15 16 17 18 19

I I I I II I I
21 22 23 24 25

I I I I II I I II
28 29 32 33

11 I I 11
35 36 39 40

44 45 46
11 I I II

48 49 50 51 52 53
I I I I 11 I I 11

55 56 57 58 59 60
-,.

File allocation table

File name Start block length

Bubble sort 10 7

Figure 10.11 Linked allocation

Advantages:
1. Avoid the external fragmentation and compaction.
2. Suited for sequential files.

I I
6

I I
13

I I
20

27

I I
34

I I
41

I I
47

I I
54

I I

File Management 0 10.13

Disadvantages:

1. The pointer itself occupies some me1nory with in the block.

2. It takes much accessing time.

I 0.5.3 Grouped allocation (or)_ indexed allocation

We can overcome the problems using this method which were faced in the previous

methods. In this method the file allocation table contains a single entry for each file.

The entry consisting of one index block, the index block having the pointers to the

other blocks. Which were occupied by the particular file. Consider the figure 10.12

for better understanding.

--
~------

File allocation table

Index l
File name block I

0 1 2 3 4 5 6
. l

!

I I

7 8 9 10 11
I I

12 13

I
I
I
!

l l I l
14 15 16 17 18

I

19 20
Bubble

I

42 !
sort !

I I I I I I

21 22 23 24 25
I I I

26 27

l
. I

i
I

. I

I I j I I I I I I

28 29 30 31 32 33 34
I
!

I I I I

35 36 37 38 39

I I I I I I I I
23

42 43 44 45 46 47 38

I I I I I I I

49 50 51 52- 53
I

56
54 55 51

24

Figure 10.12 : Index allocation

For example bubble sort .c is a file, the entry for the file in the file allocation table

poi~ts to be indexed block. The index block consisting of pointers to the other blocks.

Which were occupied by the particular file. In the figure 23,38,56,51,24 these are the

blocks occupied by the bubble sort .c .

Advantages

I.

2.

Indexed allocation supports both sequential and direct access

files, that's why it is the most popular method.

The file indexes are not physically stored as part of the file allocation table.

10.14 0 Operating Systems and Systems Programming

3. Whenever the file size increases , we can easily add some more

blocks to the index.
4. No external fragmentation.

10.6 Free space management (or) disk space management
Generally the files are stored on disk, so n1anagement of disk space is a major
probleri1 to the designers. If we want to ailocate the space for the files , we have to

know what blocks on the disk available. Thus we need a disk allocation table in
addition to file allocation table. To keep track of free disk space, the file syste111
n1aintains a free space list. The free space list records all the disk blocks which arc
free.(That is not allocated some other files). To create a file , we search the free
space list for the required amount of space and allocate it to the new file. This space
then removed fron1 the free space list.. when a file is deleted , its disk space is added
to the free space list. We discuss here a number of techniques that have been
implemented.

10.6.1 Bit vector or Bit table
A bit vector is a collection of bits, in which each block is represented by one bit. If the
block is free, the bit is 0. If the block is allocated, the bit is I .for example consider a
disk where blocks 5,8, 16,35,40,43,48,51 are free, the free space bit vector would be

1111011011111110111111111111111110111011101101110

5 8 16 35 40 43 48 51

10.6.2 Chain free points (or) Linked free space list
Another approach is to link all the free space blocks together, keeping a pointer to the
first free block. This block contains a pointer to the next free disk block and so on. In
our example we would keep a pointer to block 5, as the first free block 5would
contain a pointer to block 8, which would point to block 16, which would block to
point to 35 and so on. Consider the figure I 0.13 for better understanding.

10.6.3 Index block list
The chained free portion is not very efficient since to traverse the list, we must read
each block requiring substantial 1/0 tin1e. A 1nodification of this approach would
store the address of n free blocks in the first free block. The n-1 of these are actually
free. The last one is the disk address of another block containing the address of
another ' n' free blocks. the n1ain advantage of this n1ethod is that the address of
large nurnber of free blocks can be found quickly . consider the figure 10.14 for
better understanding.

1
I

10
I

19
I

37
I I

6
55

I

1

10

19

37

I
46

55

File Management

2 3 4 5 6 7 9
I I I I I I

11 12 8, 14 15 1 17 18
I I I I I I
20 21 22 27

I I I I
29 30 6 i i

38 39 41 42 43 44 6 I I I I I I I
5~ 47 48 iig 50 53

I I I I I I I I
I

56 57 58 59 60 61 62 63
I I I I I 1 I I I I
65 66 67 68 69 70 71 72

Figure 10.13 linked free space list on the disk

2

11

20

29

3

47

56

I

l

10
15
46
50

3 4

12 13

21 22
I

30 31
I I --

39 40

48 49

57 58

5 6

14 15

23 24

32 33

42

59 60

7

16

25

34

43

52

61

8

17

26

35

44

53

62

54
38
60
28

I

0 10.15

Free space
list

9

18

27
I

45

54

63

First index block 36 Second index block 50

Figure 10.14 Index block list

10.16 0 Operating Systems and Systems Programming

10.7 Record blocking
Already we discussed that records are the logical unit of access of a file, \Nhcr c :t"i
blocks are unit of 1/0 with secondary storage. For I/O to be performed, records 11111·it
be organized as blocks. Generally I/O transfer tin1e is reduced by using larger blork ·,
Larger blocks require larger 1/0 buffers. Generally blocking can be done in 0 11 c '•f
the 3 n1ethods.

l. Fixed blocking: In this, method, record lengths are fixed. The prescrihrd
nu1nber of records are stored in a block. For example the block capacity ,,
100 records, but the number of records in the block is 90, then the \.vasrcd
space (I 00-90 = 10 records area) is called internal fragmentation. Consider
the below figure

R2 R3 R4 RS Track

j j j
Gaps due to the
hardware design

Internal
fragmentation

Internal
fragmentation

Figure 10.15 : Fixed blocking

2. Variable length spanned blocking: In this method record sizes are nol
same, variable length records are packed into blocks with no unused space.
So some records may divide into two blocks, at this type of situation a pointer
is passed from one block to another block consider the below figure.

Block 1 Block 2

- R1 R2 · R3 R4 R5 R6

Gaps due to hardware design

Figure 10.16 : Variable blocking : spanned

3. Variable length un spanned blocking: Here records are variable length,
but the records are not spanned between blocks. In this n1ethod wasted
area is serious problem, because of the inability to use the remainder of a
block if the next record is larger than the remaining unused space. Consider
the below figure

Gaps due to hardware design

R3 R4 R5

Wasted area
Figure 10.17 Variable blocking spanned

File Management 0 10.17

10.8 Unix _File Management
Every file on a UNIX system has a unique 'inode'. The inode contains the information
necessary for a process to access a file. Such as file ownership, access rights, file
Nize, and location of the files data in the file system. Process access files by a well
defined set of system calls and specify a file by a path nam~. An inode consists the
l<lllowing information.

• File owner identifier
• File type
• File access permissions
• File access times
• Number links to the files
• Table of contents for the disk addresses of data in a file.
• File size.
The UNIX KERNEL views all files as streams of bytes. UNIX supports 4 types

of files.

I. Ordinary: An ordinary file created by users, these are application specific files.

Ii. Directory: A directory is a collection of files and sub directories, organized in
h icrarchical structure. A directory is a sequence of entries, each consisting of an
inode number and nan1e of the file.
Iii. Special: Special files are used to access peripheral devices, such as terminals
and printers. Each I/O device is associated with a special file.
iv. Name files: When user wants to create a file, the kernel must allocate disk
blocks from the file system. The file system super block contains an array that is
used to cache the number of free disk blocks in the file system. The utility program
1nkfs (make file system) organizes the data blocks of a file system in a linked list. So
each link of the list is a disJ(block that contains an array of free disk block numbers,
and one array entry is the number of the next block of the linked list.

For example consider the below figure.
! Super block list

110 115 369 100

110

'- 250 76 68 89 116

250

'- 312 301 507 111 132

L.....+ 312 512 505 506 302

!
Figure 10.18 :Linked list of free disk block numbers

r

10.18 0 Operating Systems and Systems Programming

When the kernel wants to allocate a block from a file system, it allocate~ lb~
next available block in the super block list. Once allocated, the block cannot bl
reallocated until it becomes free. Consider the following algorithms for hctttf.
understand

Algorithm alloc /* file system block allocation*/
Input : file system number
Gutput : buffer for new block
{

}

while (super block locked)
sleep (event super block not locked);

Remove block from super block free list;
if (removed last block from free list)
{

}

Lock super block;
Read block just taken from free list (algorithm bread) 1
Copy block numbers in block into super block;
Release block buffer (algorithm brelse);
Unlock super block;
Wake up processes (event super block not locked);

Get buffer for block removed from super block list ·,
(algorithm getblk);

zero buffer contents;
Decrement total count of free blocks;
Mark super block modified;
Return buffer;

;-

If a process· writes a lot of data to a file, it repeatedly asks the system for blocks
to store the data. But the kernel assigns only one block at a time

10.9 Windows 2000 File System
Windows 2000 supports several file systems, the most important of which are FAT-
16, FAT- 32, and NTFS (NT file system). FAT that runs on windows95, MS-DOS,
and OS/2. FAT 16 is the old MS-DOS file system. It uses 16bit disk addresses, so it
supports only 2 GB (216). FAT-32 uses 32 bit disk addresses and supports disk partitions
up to 2TB (1 TB= 1024 GB, 232=2TB)

NTFS is a new file system developed specifically for Windows NT and carried
over to windows 2000. It uses 64-bit disk addresses and can support disk partitions up
to 264 bytes.

Individual filename in NTFS are limited to 255 characters, path names are limited
to~"" ,767 characters. NTFS fully supports case sensitive names. An NTFS file is not
just a linear sequence of bytes as FAT-32 and UNIX files are a file consists of
multiple attributes.

File Management 0 10.19

Each NTFS disk partition contains files directories bitmaps, and other data
structures. Each partition organized as a linear sequence of blocks.

I 0.9.1 Key features of NTFS ·
llecoverability: NTFS having high recoverability from the system crashes and disk
failures.

Security: It provides high security an1ong all the files

1,arge disks and large files: NTFS supports very large disks and very large files,
so that it is more efficient than FAT.

Multiple data Streams: In NTFS a file is treated as a stream of bytes. It is possible
to define multiple data streams for a single file.

(;eneral indexing facility: In NTFS files can be indexed by any attribute.

I 0.9.2 Disk storage concepts
Sector: The sector size in NTFS IS 512 bytes. A sector is the smallest physical
Storage unit on the di_sk.

Cluster: collection of sectors is called cluster. The cluster size is power of 2.

Volume: Collection of clusters is called volume. The maximum volume size for NTFS
is 264 bytes.

Recoverability: The key elements that NTFS supports recoverability are.

• I/O Manager
• Log file Service
• Cache Manager
• Virtual Memory Manager.

Exercise:
I. What is a file? What are the operations of a file?
2. Explain different file allocation methods?
1 Explain different file accessing methods?
4. Explain free space management?
5. What is a file manage1nent system?
(,. What are typical operations that may be performed on directory?
7. What is the relationship between a path name and working directory?
X. Explain the purpose of the 'open' and 'close' operations?

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Book","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Document","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

{"type":"Form","isBackSide":false,"languages":["en-us"],"usedOnDeviceOCR":true}

