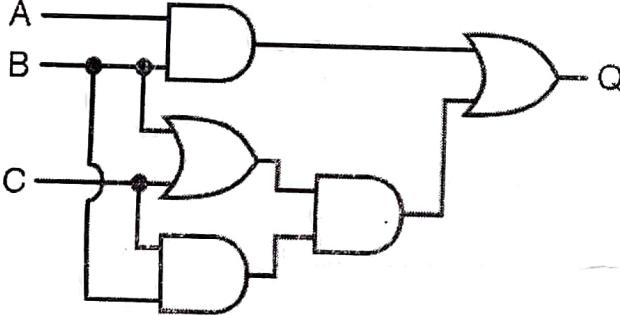


COURSE NAME: B.Tech

SEMESTER: 2nd

BRANCH NAME: ALL (Sec: D,E,F,G,H,I,J)

SUBJECT NAME: BASIC ELECTRONICS


FULL MARKS: 30

TIME: 90 Minutes

Answer All Questions.

The figures in the right hand margin indicate Marks. Symbols carry usual meaning.

Q1.	Answer all Questions.	[2 x 3]
	a) Write the difference between PIV and Knee voltage of a diode.	
	b) Is BJT a bipolar or unipolar component? Justify.	
	c) Convert $(2436.6/2)_8$ into binary and decimal equivalent.	
Q2.		[8]
	(a) A Si diode a has reverse saturation current of 10 nA at 25°C . Calculate the current through the diode for a forward bias voltage of 1.2 V . Also compute the static and dynamic resistance of the diode.	[4]
	(b) Discuss the current flow mechanism in semiconductors.	[4]
	OR	
	(a) A diode with forward resistance of 50Ω supplies power to a load resistance of 1200Ω from a 20V rms source. Draw the circuit and calculate: (i) DC output voltage (ii) ripple factor of the diode (iii) PIV rating of the diode (iv) Efficiency of the circuit.	[4]
	(b)	<p>For the above circuit determine I, V_1, V_2, and V_0.</p>
Q3.		[8]
	(a) Explain the working principle of transistor with neat sketch. Derive the relation between current amplification factor of common base and common emitter configuration.	[4]
	(b) In a transistor if I_E is 8 mA and I_B is $1/100$ of I_C . Determine the value of I_B and I_C .	[4]
	OR	

	(a) Write De-Morgan's theorem and verify by its truth table. (b) (i) Divide $(1010101)_2$ by $(11)_2$ (ii) $(10110)_2 - (10011)_2$	[4] [4]
Q4.		[8]
	(a) Perform the following conversion: - (i) $(7483)_{10}$ to hexadecimal. (ii) $(F9A.D5)_{16}$ to decimal. (iii) $(1051.36)_{10}$ to octal. (iv) $(53.625)_{10}$ to binary. (b) (i) Simplify the following logical equation and draw the logic circuit.	[4] [4]
	$Y = \overline{(\overline{X} \cdot \overline{Y} + X \cdot Y \cdot Z)} + X \cdot (Y + X \cdot \overline{Y})$ <p>(ii) If $A=1, B=0$ and $C=1$, find the value of Q for the following logic circuit.</p>	
	OR	
	(a) Realize NOT, AND, OR, Ex-OR and Ex-NOR gates using NAND gates only. (b) Subtract 46 from 99 using 1's and 2's complement methods.	[4] [4]