B.Tech-5th(IT)

Formal Language and Automata Theory

Full Marks: 50

Time: $2\frac{1}{2}$ hours

Answer all questions

The figures in the right-hand margin indicate marks

Symbols carry usual meaning

1. Answer all questions:

N. C.

- 2×5
- (a) What is the significance of ε-Moves.
- (b) List any 5 identity rules for regular sets.
- (c) How do we say that the given grammar is ambiguous? Explain with example.
- (d) Explain the acceptance of PDA.
 - (e) Define turning machine. How a TM accepts a language?

(Turn Over)

- 2. (a) Design a DFA for the following language $L = \{0^m \ 1^n \mid m \ge 0 \text{ and } n \ge 1\}$ 4
 - (b) Define NFA with epsilon with an example.

Or

(a) Find DFA equal to NFA described by the following state transition table, initial state = p, f={q, s}

States	- 0	
- >	q, s	q
y ⊨ q		q, r
T	S	p
y S		p

- (b) Construct DFA and NFA accepting the set of all strings containing 101 as a substring.
- 3. (a) Consider the following regular expression and construct the finite automaton a(a + b)*b.

B.Tech-5th(IT)/Formal Language and Automata Theory

(Continued)

(b) Convert the following Mealy machine into its equivalent Moore machine.

Present State	I/P=0		I/P=1	
Tresent State	Next State	O/P	Next State	O/P
->A	C	0	В	0
В	A	1	D	0
C	В	1	A	1
D	D	1.	C	0

Or

(a) Construct a Mealy machine which is equivalent to the Moore machine given in table.

Present State	Next State		Output
1 Tesent Bane	a=0	a=1	
->p	р	q	0
g	р	r	0
r	р	r	1

(b) Prove
$$(a + b)^* = a^*(ba^*)^*$$

4

B.Tech-5th(IT)/Formal Language and Automata Theory

(Turn Over)

4. (a) What is meant by ambiguous grammar?

Test whether the grammar is ambiguous or not.

S-> A | B A-> aAb | ab B-> abB | €

(b) Prove that the language L={aⁿbⁿcⁿ|n>=1}is not context free using pumping lemma.

Or

- (a) Obtain PDA to accept all strings generated by the language 4

 {aⁿb^maⁿ | m, n>=1}
- (b) Convert the following grammar into CNF.

S->bA/aB

A->bAA/aS/a

B->aBB/bS/a

B. Tech-5th(IT)/Formal Language and Automata Theory

(Continued)

5.	(a)	Discuss Chomsky's Hierarchy of formal	А
		languages.	4

(b) Construct a PDA which recognizes all strings that contain equal number of 0's and 1's.

Or

- (a) Construct a PDA which recognizes all strings ww^R where w∈ {a,b}*.
- (b) Prove that the following language is not context-free language L={www|w€{a,b}*} is not context free.
- 6. (a) What are the various variations of TM? 4
 - (b) Explain P and NP problems. 4

Or

(a) Design Turing Machine to increment the value of any binary number by one. The

B.Tech-5th(IT)/Formal Language and Automata Theory

(Turn Over

output should also be a binary number with value one more the number given. 4

(b) Explain undecidability. Explain with example.

Tech-5th(IT)/Formal Language and Automata Theory