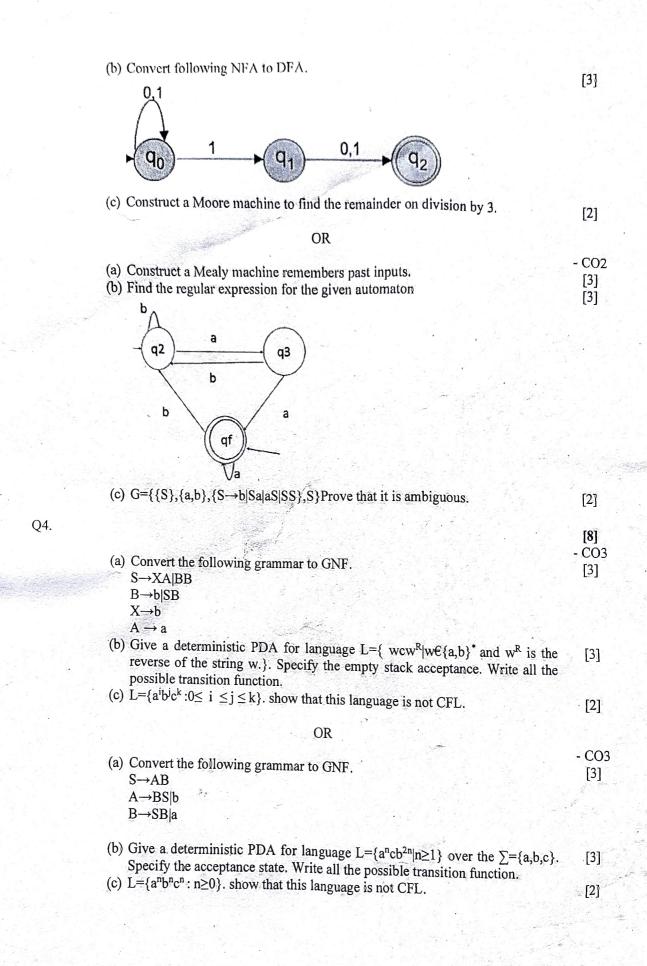
VEER SURENDRA SAI UNIVERSITY OF TECHNOLOGY (VSSUT), ODISHA Odd Mid Semester Examination for Academic Session 2025-26

COURSE NAME: TOC BRANCH NAME: CSE/IT SEMESTER: 5th

SUBJECT NAME: Theory of Computation

FULL MARKS: 30


TIME: 90 Minutes

Answer	All	Quest	ions.
--------	-----	-------	-------

The figures in the right hand margin indicate Marks. Symbols carry usual meaning.

Q1.		Answer all Question	ıs.			1	[2 × 3]
	a)	Construct a DFA fo			re the number of 'a'	and number of	CO1
	b)	Write the regular $\Sigma = \{0,1\}$ which end	expression	that represent	he language of a	ll strings over	- CO2
	c)	Construct the gram reverse of the string	mar to deriv	e the language	$L = wcw^{R} w \in \{a, b\}$	and w ^R is the	- CO3
Q2.							[8]
							- CO1
		(a) Construct a	DFA that sta	ts with '01' over	$\Sigma = \{0,1\}.$		[3]
		(b) Design an N n≥0}	NFA with no	more than 5 stat	es for the set {abab	1 n>0 U{aban	[3]
			e powerful th	nan DFA. State tr	ue or false. Justify y	our answer.	[2]
				OR			
				344			- CO1
		(a) Construct a DFA that ends with '01' over $\Sigma = \{0,1\}$.					
		(b) Design an NFA that accept 101 as sub-string.					
		(c) Using pum regular lang		for Regular langu	age prove that {anb	ⁿ n≥1} is not a	[2]
Q3.							[8]
							- CO2
		(a) Construct a	minimum st	ate automaton ed	quivalent to given a	utomaton whose	[3]
		transition table is given below					
			→q ₀	qı	q ₃		
		<i>(</i> *)	qı	q ₂	Q4 ·		
			(In)	0.			

\rightarrow q $_0$	q ₁	Q3
qı	q ₂	94
q ₂	q ₁	Q4
q ₃	q ₂	Q4
*q4	Q 4	Q4

